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example, a systematically extinct reflexion, then it may 
be possible to observe a net intensity at h2k212. From 
this criterion, the above rule may be written as 2(h~ + 
ha) + (k I + k3) = 4n + 2, on noting that k~ + k 3 must 
always be even. With a list of the ten strongest 
reflexions (some of which were not recorded by Trojer) 
and their symmetry equivalents to define d* and d~', 
computation has shown that no combinations of d* + 
d~' = d~' satisfy the above rule for any orientation of the 
crystal or any number of reciprocal lattice points on the 
sphere at the same time. Therefore multiple reflexion 
effects can be eliminated as a cause of the observable 
intensities and hence the true space group may be taken 
as P21/a. 

As a corollary to the above analysis, it was of 
interest to see whether or not Tolliday's data could 
equally well have been described by P2l/a symmetry, a 
possibility which she did not apparently consider. In 
order to verify this, a Patterson map was computed in 
sections of interval ~0 with her data (Tolliday, 1959). 
The peaks that she found equivalent in height to the 

÷rl 1 0~, origin peak at _~,~, j were in fact just over half the 
height in this computation. Moreover, if the inter- 
atomic vectors between symmetry-related atoms due to 
a-glide symmetry, which take the form + (½, ½+2y,0), 
are considered, then the y coordinates would have 
values ~, ], ~ and ] if the vector peaks are exactly located 
at 1 +(~q,0). Since the densest part of the peaks on the 
Patterson map at these positions were spread over four 
intervals from +~o to +~0 in the V direction, the 
expected deviations of the y coordinates from the ideal 
values of ~, ], ~, and ] would be within +0.07 which, 
from an analysis of Table 1 for both Tolliday's and 
Trojer's fractional coordinates, is the case for all atoms. 
A structure factor calculation based on Trojer's atomic 

* The additional peak at (½,],0) is invoked by the symmetry of the 
Patterson synthesis. 

positions and isotropic thermal parameters was made 
with Tolliday's data. R was 30% after adjustments 
were made to the scale factor. Although at the time it 
was not feasible to pursue this analysis to least-squares 
refinement, the above results do clearly indicate a fit 
between Tolliday's data and space group P2~/a. 

Conclusions 

The striking resemblance between Trojer's and Tol- 
liday's structures of parawollastonite lies in their ability 
to satisfy the conditions for which the two space groups 
C'21 and P21/a are equivalent. It is therefore not 
surprising that Tolliday found the structure refined 
successfully in C'21 and not in C'21/a, its centrosym- 
metric counterpart. Furthermore, in view of the con- 
clusions of the previous section, structural descriptions 
based on Tolliday's space group, such as the one given 
by Bragg & ClaringbuU (1965), would seemingly have 
to be revised. 

MGV is grateful to the Cement Makers Federation 
for a grant during the course of this work. 
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Abstract 

Two procedures are described to extend and refine 
phases starting from a medium-sized set of known 
phases. From tests with 376 and 400 atom structures 
it was found that for extension purposes the tangent 
formula is suitable; for refinement purposes the tangent 
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formula was adapted in order to maintain the enantio- 
morph. 

Introduction 

In protein crystallography, direct methods have been 
used to extend and refine phases by employing: (1) the 

© 1979 International Union of Crystallography 



942 PHASE EXTENSION AND REFINEM~ENT 

Sayre equation as such, and (2) the angular part of the 
Sayre equation. The first method (Sayre, 1972) refines 
phases by minimizing 

. . . . .  ) : z ve.[o(.H,)r.- Z V,, 
H K 

(1) 

Here 0(IHI) is a known function of IHI. As in each 
cycle of this iterative method the equation system 

0(IHI) F n = y. F K FH_ r (2) 
K 

is processed, the computations are lengthy, even by 
today's standards. Further research along this line 
concentrates therefore on convolutional expressions 
other than (2), requiring fewer computational 
operations (Sayre, 1978). 

In the second method, tangent refinement (Coulter & 
Dewar, 1971) or large determinants (de Rango, 
Mauguen & Tsoucaris, 1975) are employed. In polar 
space groups such as P21 and R3, tangent-refinement 
techniques have been found to lead to centrosym- 
metric phases in a few cycles. On the other hand, in 
space groups such as P212~21 successful phase refine- 
ments and extensions have been reported (Coulter & 
Dewar, 1971). The determinant technique starts with 
an N x N determinant consisting of approximate 
phases for most structure factors. It determines and 
refines phases for the last row of an (N + 1) x (N + 1) 
determinant. Because there is a vast amount of a pr ior i  
phase information not subject to change, the new 
phases are strongly related to those of the starting set. 
Hence, even in polar space groups, results are satis- 
factory, but the computations are evidently very time 
consuming. 

In the present investigation our aim was to adapt the 
tangent formula such that the phase calculation would 
be both fast and enantiomorph conserving. From the 
triplet phase sums (-tpx + ~0 K + 0n-K), for a medium- 
sized set of known phases, the average triplet phase 
s u m s  /13 are calculated as a function of E 3. As a next 
step, new phases are calculated either using a procedure 
similar to that of Hauptman, Fischer, Hancock & 
Norton (1969) or by means of the normal tangent 
formula. The third and last step of the method is an 
enantiomorph-specific phase refinement based on an 
adapted tangent formula, in which the average phase 
sums/I  3 provide the necessary stability for maintaining 
the enantiomorph. 

Preliminary results were reported at the Tenth Inter- 
national Congress of Crystallography (Sint & Schenk, 
1975). The examples given in this paper show that the 
method is enantiomorph conserving and fast. Our next 
efforts will include its application to small proteins. 

Calculation of  the average triplet phase sums 

The starting point is a set of known phases, such as, 
in the case of proteins, those corresponding to a 
resolution of 2.5 A. Within this group all triplets for 
which E 3 exceeds a limit value are generated and their 
phase sums are calculated: 

6HK = --~OH + ~OK + q~H-K" 

The E 3 range is divided into a number of intervals over 
which 6hk is averaged: 

t~ (E3)  = <I t~HKI > E 3. ( 3 )  

From a plot of fi(E a) as a function of E 3, the/13 function 
is obtained as the curve representing the best fit. Due to 
the small range of E 3 values in our tests,/13 is a straight 
line. The Aa(E3) curve provides an estimate of the 
absolute value of a triplet phase sum. An example of a 
/13 curve is given in Fig. 1. 

Phase extension 

As mentioned in the introduction two methods were 
developed to extend a set of phases. In the first 
procedure (to be referred to as graphical procedure) 
values of 

q~(qgn) = ~ E31--~o H + ~OK + tPH-K-- sA31 (4) 
K 

are calculated for ~0 H in the range from 0-1 cycle in 
steps of 0.01 cycle from the phases tpK and ~0H_ K for a 
large number of reflections K. In (4), for each term the 
sign s = + 1 is chosen such that the smallest contri- 
bution of the term to the summation is obtained. 
Expression (4) is similar to the expression used by 
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Fig. I. A plot of (l~l)E 3 (given in recycles) us <E3) for ten groups 
of triplets. From left to right the points in the graph represent 
13 014, 9207, 3828, 2010, 918, 504, 240, 117, 72 and 39 triplets 
respectively. 
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Hauptman, Fisher, Hancock & Norton (1969) except 
for the relative weights of the individual terms. The 
lowest value of q~((on) gives the most probable value for 
(on. In the case where two pronounced minima are 
found with a small difference between them the phase is 
not accepted. 

The second procedure is based on the normal 
tangent formula 

-- 

E 3 sin ((oK + (on-K) 
K 

tan (on = . (5) 
E 3 c o s  ((oK "[- (oH-K) 

K 

New phases are accepted only if the number of terms in 
the summation over K is sufficiently large. It is 
expected that errors, introduced by taking all 6nK = 0 
will cancel out provided that the phases (oK and (on-K 
have random errors only. 

From a theoretical point of view the first procedure is 
to be preferred, because it employs all information 
about the enantiomorph both in the phases ((oK, (on-x) 
and in the triplet relationships (A3). The tangent 
formula utilizes only the enantiomorph information 
contained in the phases but, since it takes only about 
2% of the computing time required for the other 
method, it is to be preferred as long as the new phases 
are enantiomorph specific. 

Phase refinement 

Once a set of newly determined phases has been 
obtained, the new phases together with those of the 
starting reflections are refined in an enantiomorph 
specific way by means of the adapted tangent formula 

E 3 sin ((oK + (oH-K - s A 3 )  
K 

tan (on = , (6) 
Y E 3 cos ((oK + (on-x, -- sA3) 
K 

in which E 3 = N - l I E n  E K En_KI and A 3 is the estimated 
value of I-(o n + (or + (on-K I mentioned before. Again 
the sign s is determined such that -(oH + (or + (on-K - 
s A 3 is closest to zero. 

The fact that this procedure is capable of maintain- 
ing the enantiomorph can be seen by the following. If 
Z~ 3 in (6) is replaced by I~HKI all signs s will be 
determined such that SI~HKI = --(oH + (oK + (oH-K" AS a 
consequence (on will be unchanged under refinement. 
Use of A 3 instead of 16nx`l introduces random dif- 
ferences A 3 -I~nKI and hence refinement based on (6) 
will be enantiomorph specific. 

The refinement criterion of  (6) 

Schenk (1972) pointed out that instead of the tangent 
formula (5) the exponential expression 

exp(i(oH) = Y E3 exp[i((oK + (oH-K)I/Y E3 (7) 
K K 

is commonly employed. He showed that the quantity 
which is actually minimized is 

Rr = Y Z E3 sin2 ½(--(oH + (oK + (oH-K)" (8) 
H K 

Similarly, instead of (6) the exponential equation 

exp (i(on) = Y E 3 exp [/((oK + (on-K-- sA3)]IZ E3 (9) 
K K 

is used leading to the refinement criterion 

R A t =  ~ . ~ E 3  sin2½(--(ou + (o K + (oH_K--SA3). (10) 
H K 

Test of  the adapted tangent formula (6) 

The adapted tangent refinement procedure has been. 
applied to two large artificial structures. 

The first structure was generated in space group P21 
with one heavy atom (relative weight 13) and 187 light 
atoms (relative weight 1) in the asymmetric unit. The 
heavy atom was situated at y = 0-250 with randomly 
chosen x and z coordinates, in order to have an easy 
check on the centrosymmetry of the phases. The 187 
light atoms were situated at randomly chosen x, y and z 
coordinates. For this 376 atom structure 5000 E values 
were calculated, the 1000 strongest of which show a 
phase distribution given in Table 1, column 1. The pres- 
ence of the heavy atom causes the phases to be pseudo- 
centrosymmetric. 10000 unique triplets with E e >_ 0-35 
among the 1000 strongest reflections were used. The 
first experiment was a normal tangent refinement. 
At the start of the refinement all reflections were given 
their correct phases. After only one iteration it was 
obvious that the phases tended to become centro- 
symmetric (see Table 1). After three iterations this 
process was nearly completed and most of the phases 
were within 5 mcycles (___2 °) of 0 or n. The average 
phase error was 62 mcycles. Next the adapted tangent 
procedure was applied and as can be seen from Table 
1, columns 4 and 5, the distribution of the phases after 
4 and 20 cycles was far from centrosymmetric, 
although there are slight differences with respect to the 
distribution of the true phases. The average phase error 
after four iterations was 33 mcycles and after 20 
iterations 38 mcycles. In the set of 1000 reflections, six 
phases were in error (phase difference larger than 250 
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mcycles) and for eight reflections the phase of the 
enantiomorph was found rather than the correct phase. 

To provide another test a structure was generated in 
space group P2 with one moderately heavy atom 
(relative weight five) and 199 light atoms (relative 
weight one) in the asymmetric unit. In this case the 
heavy atom was situated at x = 0.2150, y = 0 and z = 
0.2675, and the light atoms were randomly positioned. 
A total of 8921 E values was calculated, of which only 
the 990 strongest were used for the test. The distri- 
bution of the true phases is given in Table 1, column 6. 
9146 unique triplets were generated with E 3 > 0.29. 
Again the first test was a normal tangent refinement. In 
this case only the phase distribution after 11 cycles of 
tangent refinement is given in Table 1, column 7. As 
can be seen there is again a tendency for the phase to 
be 0 or 500 mcycles, although, due to the fact that the 
heavy atom now has a smaller relative weight, this 

Table 1. Phase distributions and average phase errors 
(IA~01) for both test structures 

Columns 1 and 6 give the true phase set distributions for the 376 
atom and 400 atom structures, respectively. The figures represent 
the number of phases I(01 in the respective intervals. Note that the 
intervals are not equal. Results of the normal tangent refinement (5) 
are presented in columns 2 and 3 for 376 atom structure and in 
column 7 for the 400 atom structure. Columns 4 and 5 and column 
8 give the results obtained with the adapted tangent procedure 
(6) for the two structures, respectively. 

Column 
number 1 2 3 4 5 6 7 8 

Number 
of iterations 0 1 3 4 20 0 11 10 

I~1 in 
mcycles 

0-10  86 342 488 59 48 66 240 
10-20 43 112 4 51 52 25 89 
20-30 39 25 3 50 50 25 39 
30-40 45 9 0 50 44 31 30 
40-50  33 3 0 44 42 26 16 
50-60 39 1 0 56 64 21 16 
60-70 29 2 0 38 48 16 12 
70-80 31 0 0 40 37 16 4 
80-90 13 0 0 39 37 29 4 
90--100 21 0 0 26 25 14 7 

100-150 83 2 2 38 42 94 26 
150-200 19 1 1 2 4 66 10 
200-300 25 5 1 12 11 149 17 
300--350 22 0 1 7 8 61 18 
350-400 60 1 0 25 28 74 20 
400-410 16 1 0 17 14 31 6 
410--420 22 1 1 26 32 18 7 
420-430 28 0 0 33 38 24 9 
430-440 32 0 0 42 43 29 7 
440-450 30 1 1 53 54 30 18 
450-460 49 0 0 49 49 27 27 
460-470 45 11 3 61 57 19 37 
470-480 35 37 1 53 39 23 61 
480-490 49 111 3 63 59 24 96 
490-500 106 335 491 67 76 52 179 
(IA~I) in 

mcycles 0 - -  62 33 38 0 134 

effect is not nearly as prominent as for the first 
structure. The average phase error is 134 mcycles. The 
second experiment was again the application of (6). 
The resulting phase distribution given in Table 1, 
column 8 is in good agreement with that determined 
from the true phases. Now the average phase error is 
51 mcycles, only two phases are in error and for 18 
reflections the phases corresponding to the enantio- 
morph have been found instead of the correct phases. 
From an E map calculated with this set of phases, 191 
atoms could be identified among the 227 strongest 
unique peaks. An E map calculated with the 990 
correct phases revealed 194 atoms among the 226 
strongest unique peaks. From this it is clear that hardly 
any information about the structure is lost during the 
refinement procedure based on (6). 

From the above two structures we conclude that the 
adapted tangent refinement maintains the enantio- 
morph when refining a set of phases related to one 
single enantiomorph, whereas the normal tangent 
refinement leads to centrosymmetric sets of phases. 

Test of the complete procedure 

The complete extension and refinement procedure was 
first applied to the 376 atom structure described in the 
previous section. The starting point was the inner 
sphere of 1500 reflections and the purpose was to phase 
as many reflections as' possible within the sphere of 
3500 reflections. Again, the strongest reflections only 
(20%) were used in the process and the area to be 
phased was gradually enlarged from 322 reflections to 
701 reflections in four steps. In each cycle first the A3 

57 curve was calculated, next new phases were deter- 
26 mined using (4) and finally all old and new phases were 20 
28 refined with (6) in three or four iterations. 
19 The results are summarized in Table 2. The final set 
2O consisted of 501 phased reflections out of 701 with an 
19 average phase error of 38 mcycles; four phases are in 
17 
13 error, 16 correspond to the other enantiomorph and 
29 481 are correct. Although the quality of the phases is 
99 g o o d ,  the number of new phases is not completely satis- 
91 factory. Another feature of Table 2 is the fact that 

136 
87 < 161 >o.37 gradually drops from 84 mcycles before the 

106 first step (which equals < 161>0.37 calculated with all 
15 phases correct) to 71 mcycles after the third step. This 
23 drift suggests that in spite of the use of the adapted 
16 tangent refinement the phases still have a tendency to 
14 
13 become centrosymmetric. Since the recalculation of the 
22 d3 curve strengthens this effect, a remedy might be to 
22 omit it. 
26 Next, the procedure was tested for the 400 atom P2 
24 
52 structure. The starting point was a set of 214 reflections 

belonging to the 990 strongest ones. The area to be 
51 phased was again gradually enlarged in four steps, but 
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one extra extension/refinement stage was added. The 
final set of phases consisted of 450 out of 990 phases 
(see Table 2) with an average phase error of 80 
mcycles; 45 phases were clearly in error and 18 phases 
were found to correspond to the other enantiomorph. 
An E map calculated with these 450 phases showed 
120 atoms among the 241 strongest unique peaks, to be 
compared with 90 atoms which could be identified 
among the 227 highest unique peaks in an E map, 
calculated with the 214 correct starting phases. The 
number of newly determined phases is small again 
(236), owing to the fact that strict acceptance criteria 
have been used in the extension stage in order to avoid 
phasing errors. These results have led us to try the 
following alternative procedure; phase extension by the 
normal tangent formula (5) followed by phase refine- 
ment based on the adapted formula (6), until all phases 
in a phasing area have been determined. A test was 
carried out for the 400 atom structure and, as can be 

seen from the upper half of Table 3, after the fourth 
stage all 990 phases were determined, and therefore 
stage five consisted merely of three refinement cycles 
applying (6) to all 990 reflections and 27 438 redun- 
dant triplets. The average phase error was 105 mcycles 
compared with the correct structure. With respect to 
the enantiomorph, there is a phase difference of 189 
mcycles. A total of 114 phases had an error of more 
than 250 mcycles, while 67 phases were found to 
correspond to the enantiomorph. An E map calculated 
with the above set of phases revealed 157 atoms among 
the 245 strongest unique peaks. 

Critical examination of the phases determined in 
each cycle showed that phases calculated with only a 
few contributing triplets had higher average error than 
those determined by many contributing triplets. 
Therefore the test was repeated but now a phase was 
accepted only if there were at least NMIN contributing 
triplets. In Table 3 results are given for NMIN equal to 

Table 2. Results of  the procedure using the graphical determination of  new phases for the 376 atom structure 
(columns 1-5) and the 400 atom structure (columns 6-10) 

Cycle  number  0 I 2 3 4 0 1 " 2 3 4 5 

Total  number  o f  reflections in sphere 322 390 490 600 701 214 346 481 804 990 990 
N u m b e r  of  newly determined phases  33 46 56 44 28 36 71 70 31 
Tota l  number  of  known phases  322 355 401 457 501 214 242 278 349 419 450 
Tota l  number  of  unique triplets a m o n g  997 1254 1602 2140 2510 397 551 627 929 1154 1325 

the known reflections 
(It$1)0.37 in mcycles  84 80 77 71 . . . . . . .  
(1~1)0.29 in mcycles  . . . . .  166 165 166 162 160 - -  

Table 3. Data on the phase extension and refinement procedure using expressions (5) and (6), respectively, for the 
400 atom structure 

In rows 3, 4, 5, 6, 7 and 12, data are given for A 3 = (lfihkl); in rows 3, 8, 9, 10, 11 and 12 results are given for the caseA 3 = 0. 

Stage 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 

Minimum number of terms - -  1 5 7 1 5 7 1 5 7 1 5 7 1 5 7 
in expressions (5) and (6) 

Number of reflections 214 346 291 255 481 408 341 804 745 621 990 959 888 990 960 900 
phased after this stage 

Average phase error 0 61 39 21 83 62 43 101 87 73 105 94 86 105 94 87 
Average phase difference 190 190 190 189 195 191 194 195 188 189 189 184 187 189 185 185 

with respect to incorrect 
enantiomorph 

Number of phases in error 0 21 7 3 48 18 9 95 53 37 114 78 74 114 81 76 
Number of phases in error 72 121 101 85 161 137 120 282 247 187 315 301 275 314 303 279 

with respect to incorrect 
enantiomorph 

Average phase error 0 86 55 39 112 94 78 132 119 118 140 133 134 142 137 138 
Average phase difference 190 178 178 182 167 172 171 156 156 156 154 156 153 154 155 152 

with respect to incorrect 
enantiomorph 

Number of phases in error 0 22 8 3 60 32 27 139 104 84 184 159 151 188 170 165 
Number of phases in error 72 102 88 78 122 113 108 178 174 145 227 225 194 229 222 195 

with respect to incorrect 
enantiomorph 

Number of unique triplets 397 1 1 2 1  1054 817 2306 2086 1624 6026 5821 4998 9146 9036 8622 9146 9041 8792 
known after this stage 
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1, 5 and 7. It is clear that the use of a higher NMIN 
gives better results for the average phase deviation as 
well as a lower number of phases with an error of over 
250 mcycles. An E map calculated from the phases 
obtained with NMIN equal to 7 revealed 162 atoms 
among the 240 strongest unique peaks; this number is 
not much larger than in the case of NMIN = 1, but the 
peaks were much higher, although the number of 
contributing reflections was smaller. 

The alternative procedure was also tested using A s = 
0 in (6), which is equivalent to the use of the usual 
formula (5). From the results given in the lower half of 
Table 3 it can be concluded that: (a) the final phase sets 
are almost centrosymmetric and (b) the use of a higher 
number for NMIN only slightly slows down the 
appearance of the other enantiomorph. For the sake of 
comparison an E map was calculated from the phases 
obtained with A 3 ---- 0 and NMIN = 7. Only 93 out of 
the 243 strongest unique peaks could be identified as 
atoms. 

The total computing time for the tangent extension 
procedure mentioned above ranged from 78 to 105 
c.p.u.s (on a Cyber 73 computer). The procedure based 
on the graphical determination of new phases took 147 s 
c.p.u, time for the 400 atom structure despite the fact 
that only + 1300 unique triplets were used in the final 
refinement cycles. Our conclusion is that the procedure 
based on graphical phase determination is rather 
expensive and difficult to optimize for accepting new 
phases. Since the procedure using (5) leads to a 
maximum number of more or less correct phases in a 
minimum of time, it is to be preferred. If this procedure 

is combined with a refinement procedure based on (6) 
the results are sufficiently enantiomorph specific to lead 
to a correct solution, starting from a medium-sized 
phase set. 

The main conclusion of this paper is that with a 
relatively simple improvement in the estimates used, the 
centricizing tendency of the tangent formula is efficien- 
tly blocked. However, since it is expected that better 
estimates will improve the quality of the final map, this 
will be an important part of our future efforts. 

The authors thank Dr C. H. Stam and Professor 
B. O. Loopstra for criticizing the manuscript. One of 
the authors (GJO) is indebted to the Netherlands 
organization for the advancement of pure research 
(ZWO) for financial support. 
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Abstract 

Any cubic crystal structure can be divided into small 
units in the form of congruent semi-regular (Archime- 
dean) truncated octahedra. The centers of these 
polyhedra can be chosen at invariant equivalent 
positions for most cubic space groups. The part of a 
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crystal structure enclosed by an Archimedean poly- 
hedron is called a geometric unit (or unit for short); 
however, the boundary of the unit may be relaxed to 
include a whole molecule or ion in case the geometric 
division is not convenient. Based on the properties and 
arrangements of such geometric units, there is an 
interesting relationship among the 36 cubic space 

© 1979 International Union of Crystallography 


